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Abstract

Recently proved theorems concerning weak convergence of non-Markovian
processes to diffusions, together with an averaging and a stability method, are
applied to two (learning or adaptive) processes of current interest: (1) an
automata model for route selection in telephone traffic routing, (2) an
adaptive quantizer for use in the transmission of random signals in communica-
tion theory. The models are chosen because they are prototypes of a large
class to which the methods can be applied. The technique of application of
the basic theorems to such processes is developed. Suitably interpolated and
npormalized "learning or adaptive" processes converge weakly to a diffusion,
as the “learning or adaptation” rate goes to zero. For small learning rate,
the qualitative properties (e.g., asymptotic (large-time) variances and para-
metric dependence] of the processes can be determined from the properties of
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I. INTRODUCTION
References (7], [1] develop a useful method to study the asymptotic proper-
+ 0 and ne < T < = for any real T of solutions to stechastic difforence

ties as ¢

equations of the form

€ N ) £ L€ Ve £ € . ¢ x
= + € R,
(1.1) Yn+l In + ahE(Yn,ﬁn) + Ye gE(Yn,En) ole), Yn R
C . €
where the distributions of the random sequence {En} might depend on the {Yn}.
Such equations occur freguently in applications. The methods in (1] also work
when € is replaced by a sedquence Cn + 0 as n * @ from which asymptotic proper-

ties (rates of convergence) of various forms of stochastic approximations can

be cobtained.

The emphasis in (1] (an application of [7]) concerned the case where the
hE and g€ are smooth, and no details for the non-smooth case or its applications
were given, nor was the asymptotic case where n - «, then € + O treated. This
is a deficiency, since in many applications in communication, control and
automata theory, the he and 9. might simply be indicator functions and the
noise {En} depend on {YE}, and the asymptotic properties (as n + «, then € =+ 0)
desired. Here, we apply the basic results of [7] to two such problems. The
two problems have:-current technological importance in their own right and each
has been the subject of a great deal of work. Our method often yields a complete
analysis of the asymptotic properties under realistic conditions. The two
problems are typical of a wide class, and they illustrate the power and
applicability of the general technique, as well as the method of applying it
to concrete problems. 1In a sense the method is an extension with more complex
memory structure of the sort of "slow learning” results obtained by Norman [9],

and should have broad applications to the areas cited above.
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The basic type of result is the following. Define v¥ (), t € [0,%), by
£ € € € C . .
Y (0) = Yo and Y (t) = Yi on [ie¢,i€+e). Under appropriate conditions,

Theorem 1 gives weak convergence of {YY(-)} in Dr(O,w) to a particular diffusion
process, as £ + 0. Now, let {nf} denote a sequence of integers tending to =

as € + 0. For t > 0, define ?C(t) . Yﬁ(t+ene). The tilde " always denotes a
shift by n (discrete parameter) or €n (continuous parameter). By using
Theorem 1 but starting {Yz} at time n, instead of at time 0, we will get a

great deal of information on the asymptotic properties (large n, small €).

The next section gives some background material from [7]. Sections III to VI
treat a learning automata approach to certain problems in adaptive routing of
telephone calls [2]-[3]. The second problem, in Sections VII-VIII, concerns

the asymptotic theory of an adaptive quantizer from communications applications

{41, Is1.
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I1. SOME BACKGROUND MATERIAL

D' (0,») denotes the space of R*-valued functions on {0,®) which are right-
continuous and have left-hand limits, and is c¢ndowed with the Skorokhod topology
A

(61. %% denotes the continuous functions on R® x [0,=) with compact support

A
and jﬂg’g the subset whose mixed partial derivatives up to order o in t and 8

in the components of x are continuous, Let bi(',~), aij(~,'), i,j < r, be con-
tinuous functions on Rr x [0,»). Let the operator
2
3 1 d
= —_— 4 — -
A= bt g+ g ] axt) g
i i i3 i

be the infinitesimal operator of a diffusion process X(:). Assume that the
solution to the martingale problem (on D [0,%)) of Strook and Varadhan [8]

corresponding to A has a unigque non-explosive solution for each initial con-

dition.
Let bN(') denote a function with values in [0,1], equal to 1 on SN =
{x: 'xliN}' equal to zero in Rr-sN+1 and with second derivatives bounded

wniformly in x and N. Define {¥¢'", n>0} by

¢,N _ _e,N e,N ¢ /e e,N _€ €,N
(2.1) Yn+1 = Yn + [ehE(Yn ,Cn) + egE(Yn ,Cn) + o(c)]bN(Yn ),
YS:N = y; if |Y3| < N and is zero otherwise,

and define YE’N(-) analogously to YE(-). For purely technical reasons, it is
convenient to state the theorem in terms of {Y;'N). Let A" be the infinitesimal
operator of a (not necessarily unique) diffusion process, denoted by XN(-),

and suppose that its coefficients aN(-,-). bN(',-) are continuous, bounded,




€Ny

have compact support and equal a{-,-}, b(-,-) in S Suppose that {Y

N
A

converges weakly to some such xN(.) as + » 0, for each N. Then [7] {Y ()}

converges weakly to X{(*} as n - =, The following theorem is a restatement of ’

Theorem 3 of [7] with ToT . Theorem 2 of [7] provides a very convenient

. t N
method of proving tightness, and we will use it in the sequel. Let En' denote

. L E,N . € .
expectation conditioned on (Yj »Jj<n, Lj' j<n}.

Theorem 1. Assume the conditions stated above on the solution to the martingale !

problem on D" {0,®) corresponding to operator A, and on AN and XN(-). For each

L
N, and f(-,") € 2, a dense set (sup norm) in ﬁﬁb, let there be a sequence

{fe' (<)} satisfying the following conditions: it is constant on each interval

(ne,ne+e), at ne it is measurable with respect to the og-algebra induced by

{Y?’N, jin,gg, j<n} and

E,NfE,N

e,N
o (ne+e)=f " fne)| < o,

(2.2) sup E|f€’N(ne)| + sup % E|E
n,e n,e

and as € > 0 and for each t as nc - t,

(2.3) El£5"N(ne) - f(Y;'N,n€)| >0,
E;’Nfe'N(ne+e)-f€'N(nc) 3 N €N
(2.4) EI - (== +Aa)E(Y ' ,ne)| »o0.
€ ot n

Then, if {YE’N(-), €.>€>0} is tight in DY [0,») for each N, where € does not

0]

depend on N and Y°(0) converges weakly to X(0), {y“(-)} converges weakly to

X(-), the unique solutiovhn to the martingale problem with initial condition X(0).

- ) I s et —————adei Rt




III. AN AUTOMATA PROBLEM - INTRODUCTION

Narendra [2], [3) and others have studied the applicat ion of automata and
learning theory to problems in the routing of telephone calls through a multi-
node network and have suggested a variety of interesting automata models for
this application. Under various assumptions (both explicit and implicit) they
have stated convergence results in a number of cases. Generally, their results
are applications of Norman's [9] results on slow learning. Here, we take one
of their models and show how to apply Theorem 1 to get a much more complete
asymptotic theory (large time) for small rate of change of the automata bchavior
(¢), and under more realistic conditions. The case dealt with here can readily
be generalized - as will be commented on below. The example illustrates the
power and usefulness of the approximation techniques used here, The algorithm
should be considered as a prototype. It might not be the best, but it well

serves to illustrate the method.

The problem formulation. Calls arrive at a transmitting or switching

terminal at random at discrete time instants n = 0,1,2,..., with P{one call
arrives at nth instant}) = u, p € (0,1), P{>1 call arrives at nth instant} = 0.
From the terminal, there are two possible routings to the destination, route

1 and route 2, the ith route having Ni independent lines - and can thus handle
up to Ni calls simultaneously. Let [n,n+l) denote the nth interval of time.
The duration of each call is a random variable with a geometric distribution:
Pl{call completed in the (n+l)st intervalluncompleted at end of nth interval,
route i used} = Ai’ Ai € (0,1). The members of the double sequence of the
interarrival times and call durations are mutually independent. It is possible
to work with more general Markovian arrival processes, but we retain a simple

structure in order to emphasize the main points. In practice, a more complex

. e T =t e e ——— s OB S - wage——
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network would occur - and perhaps cycles might exist, and a vector routing
parameter would be used, one component per node. But the main idea is similar.
As in Theorem 4, the average dynamics are used for the stability analysis.
From that point on, the proof of the appropriate gencralization of Theorem 5
would be quite similar to the proof of Theorem 5.

The parameter ¢ will be uged for the rate of adjustment of the routing
automaton - the device which selects the route. The adjustment mechanism will
be defined later. The routing automaton operates as follows. For each fixed
e, let {y;} denote a sequence of random variables - with values in [0,1]. 1In
order to have an unambiguous sequencing of events, suppose that the calls ter-
minating in the nth interval actually terminate at time n+l, and arrivals and

2

route assignments are at the instants 0,1,2,... precisely. Thus the state at

time (n+l) does not include the calls just terminated or calls arriving at (n+l).

€,2

xtd x
n n

. 3 €,1 ,
Define the "route occupancy process" Xn = ), where Xn' is the number

of lines of route i occupied at time n+. Thus, X;'l

< Ni. If a call arrives at
instant n+l, the automaton "flips a coin", and chooses route 1 with probability
yi and chooses route 2 with probability (l-yi). If all lines of the chosen route
i are occupied at instant (n+l) , then the call is switched to route j (3 # 1) .
If all lines of route j are also occupied at instant (n+l) , then the call is
rejected, and disappears from the system.

In a more realistic situation, the network would have many nodes - not
simply 2, and many possibilities of routing from node to node. The adjustment
algorithm might be different, but the problem would be handled in exactly the
same way. The object is to adjust the {y:} sequentially (based on the system
behavior) so that some desired behavior occurs. In order to be specific, we
€

use the following "linear-ireward" algorithm (3). Let Jin denote the indicator

-y e sy UE GBS eE e




of the event {call arrives at n+l, is assigned first to route i and is
accepted by route i}. For practical as well as theoretical purposes, it is

important to bound y; away from the points 0 and 1. Let 0 < Yq < Y, < 1. We
Y
use the algorithm (3.1), where v denotes truncation at yu or y,. and a(y) =
¢
1-y, B(y) = ~-y.

y

€ u

L€ €, . € €, €

(3.1) Yoel = [yn + ea(yn)Jln + EB(yn)Jzn] YQ'

Define a_(+), B _(-) such thata(-) =a (-} in [y, ,y ~€] and B(-) =
€ € 3 27 u

86(-) in [yﬂ+e,yu]'and otHerwise arce such that (3.2) is equivalent to (3.1):

€

(3.2) Yre1

£ €, € €, _€
=Y.t E[ac(yn)Jln * BE(yn)JZ’n]'

We will study the asymptotics of the behavior of a centered and normalized
{yi} for small e. Part of the difficulty, which our scheme is well able to
handle, is due to the fact that {y;} is not Markovian. In the theoretical parts

€ . .
of [2], [3], the problem is set up so that {yn} is Markovian.

€
Some definitions. If the choice probabilities y, are held fixed at some

value y for all n, then the route choice automaton still makes sense, although
there is no learning. For fixed route selection probability y € (0,1), let
{xn(y)} = ﬂXi(y),xi(y», 0<n<=} denote the corresponding route occupancy

process. For the process {xn(y)}, the state space 2 = {(i,j): ijnl,jjﬂz) (whose

' points are supposed ordered in some fixed way) is a single ergodic class, and the

T e e e+ e e —— v — A=Yt ST v e cm e -




probability transition matrix, denoted by A'(y), has infinitely differentiable
components. With given initial condition {P{XO(y)=u}, a€ 71 define Pn(aly) =

P{xn(y)=a} and the vector Pn(y) = {Pn(a|y), a€ 2z}. Then

(3.3) P ) = AP (.

The pair {(X;,y;),nzo} is a Markov process on 2N lyv,yul and the marginal

transition probability P{Xi+l=(k,l)lxi=(i,j), y;} is just the ({(i,3)-column,

{k,2)-row) entry of N(yg). Define the vector Pi = {Pi(a), a€ 2} where Pi(a) =

€ € £
= < .
P{Xn alyg, £<n, XO} Then

(3.4)

ael
|

€, €
n+l A(Yn)Pr\'

Also, let P(y) {P(aly), «€2} denote the unique invariant measure for {Xn(y)},
with marginal defined by pl(jly) = ka(j,kly), pliy) = (Pr(5y), 3<N;}, and
similarly for route 2. Finally, define the transition probability P(a,j,ully) =

P{xj(y)=al|xo(y)=a} and write the marginal as

Pi(a,j,k|y) = P{X;(y)=klxo(y)=a}.

Define Ei to be the expectation conditioned on {X;, yz, £<n}.
Ny
A relationship of (3.1) to a differential equation. Define Vi = (l-ki) .

Note that

€€ € t,1
(3.5a) Enaln uynll - vll{xn Nl}],




r———

-9-

€£_E € €,2_
(3.5b) E J, = u(l-y) 1 “2I{xn -Nz}].

For small £, it is reasonable to try to relate the behavior of {y;} to the
solution of (3.6), where F(y) is just E[u(y)J;n + H(y)J;n], but with {Xi,y;}

replaced by {Xn(y),y} and using the stationary measure.

(3.6) v

1 2
ualy)yl1-v, P (Nlly)l - u(l-y)B(y) [1-v P (Nzly)]

2 1 . on
uy (1-y) [v P (Nzly) - VP (Nlly)] : Fly).

As y incresses, Pl(N1|y) increases (and P2(N2|y) decreases) monotonically.
Thus, there is a unique point y € (0,1) such that ?(;) = 0. Also, ﬁ(y) >0

for y <y and Fly) < 0 for y > y. We assume that y € (yory ) and we also make

the apparently unrestrictive assumption that ﬁy(;) # 0. We actually will study

the asymptotic properties of U; B (yi—?)/fg, for large n and small €. 1In
particular, let n. be a sequence of integers tending to = as ¢ + 0, and define

the processes vt () by (o) = Ui and 0°(t) = U; +i OD [ie,ie+€) . When the
U%(-) are dealt with, the {ne} wiil either be expiicitly defined or their

values will be unimportant. We show weak convergence of {U%(-)} to the Gauss-
Markov diffusion u(-:) defined by (6.3). If n_ > fast enough as & + 0, then

the limit u(-) is stationary. The general method can be applied to many other

problems in learning, automata and systems theory.

et e o e e v s s m e m—— . - A e 7 -
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IV. SOME PRELIMINARY RESULTS

In this section, we prove some auxiliary results concerning uniform con-

vergence of Pn(y) and its derivatives to P(y) and its derivatives.

Theorem 2. For each y Ei[yg,yu], let A'(y) denote a Markov transition matrix

(continuous in y) such that the corresponding Markov chain {xn(y)} is ergodic

with invariant measure P{y). Then P(:) is also continuous and there ig a § > 0

such that the eigenvalues of A(y), except for the single eigenvalue unity,

are bounded in absolute value by 1-§ for all y €& [yg,yu]. Pn(y) converges to

P(y) uniformly (and at a geometric rate} in y E’[yl,yu] and in Po(y).

Proof. The last sentence follows from the penultimate sentence. The
continuity of P(.) is a consequence of the uniqueness for each y, of the eigen-
vector of A(y) corresponding to the eigenvalue unity (the invariant measure).

Next, suppose that there is no such §. Let A(y) be a gxg matrix and let

Al(y), ey Xq(y) denote the eigenvalues. Order them such that Al(y) =1,
Then there is a y and a sequence {yn}(:[yz,yu] such that as Y, y. at least
one eigenvalue (other than the one which is always unity) approaches the unit
circle. In particular, suppose th;t the ordering is such that Ikz(yn)| +1

and that (choosing a subsequence if necessary) the Ai(yn) converge to some Ai
as n+», for i =1,...,9. The {ii} must be the eigenvalues of A(§). But
then A'(y) is not the transition matrix of an ergodic process, a contradiction.

Q.E.D.
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Definition. Let L(y) denote the span of the eigenvectors and generalized
eigenvectors of A{y), except for the ecigenvector which corresponds to the

eigenvalue unity.

Theorem 3. Assume the situation of Theorem 1, but let A(:) be continuously

differentiable on [yl,yu] (at the endpoints, take the left- or right-hand deri-

vatives, as appropriate); then so is P(-), and Py(y) is the unique solution in

IZ(y) to the equation

4.1 P = A P + A (y)P .
( ) y(y) (y) y(y) v y)P(y)

Furthermore, the derivative P (y) given b
! n,y y} given by

(4.2) 4 y(y) = A(y)Pn

n+l, y(y) + Ay(y)Pn(y)

r

converges geometrically to Py(y), uniformly in y &€ [yz,yu] and in the initial

condition Po(y), if we set P y(y) = 0.

0,

If A(:) has continuous second derivatives on [yz,yu], then so do P{+) and

P (-), and Pyy(y) is the unique solution in I(y) to
4.3 P = A P 2A P + A P .
(4.3) yy(y) (y) yy(y) + y(y) y(y) yy(y) (y)

Also, P_ yy(y) converges geometrically to Pyy(y) + uniformly in y€ [yl.yul

“de

and in the initial conditions, if P y(y) = P (y) =0,

o, 0,yy
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Proof. Fix y. Since (I-A(y))V = 0 for Vv € X(y) implies that V = 0, in
order for (4.1) to have a unique solution in X (y) it is necessary and suffic-
ient that Ay(y)P(y) 4 A4(1-A'(y)), where # denotes the null space of the
matrix. _#(I-A'(y)) is the set of vectors Q such that A'(y)Q = Q. Since there
is a unique eigenvalue of value unity and since the row sums of'A'(y) are all
unity, the components of Q must all have the same value. Thus, the necessary
and sufficient condition reduces to Ay(y)P(y)_L constant vectors. For any
constant vector C = (¢,c,...}"', C'A(y5 = C'. Thus, C'Ay(y) = 0 and hence
Ay(y)D 4 constant vectors for any vector D. Consequently (4.1) has a unique
solution 5§(y) in Z(y).

Next, we show that E&(y) is the desired derivative. Write (for

y Eﬁ(yk,yu), otherwise § > 0 or § < 0, as appropriate)
A(y+8)P(y+8) - A(y)P(y) = P(y+8) - P(y).

Thus,

[A(y+8)-A(y) ]
§

(4.4) P(y+§) = (I-A(y))

[P(y+8)-P(y)] .
; .
The left-hand side of (4.4) is uniformly bounded and is in Z{y) for each § > 0O
(since (I-A(y))VE I(y) for any V) and it converges to Ay(y)P(y) as 6§ - 0. Wwhen
considered as an operator from I (y) to I(y), [I-A(y)] has a bounded inverse. .
Thus, as 6 » 0, [P(y+8)~P(y)]/8 converges to Py(y), which must equal E&(y), by
the uniqueness proved above.

We now turn to the convergence (4.2). By Theorem 1, Pn(y) converges geo-
metrically to P(y), uniformly in [yn,yu] and in Po(y). Also, since we use

P (y) =0
o,yY '

Rt . - i e e e I R h




n-i
(y) = ] A (y)Ay(y)Pi(y).

But Ay(y)Pi(y) is a bounded sequence in %(y), and as i » « it converges geo-
metrically and uniformly to Ay(y)P(y). Also A(y) is a contraction when acting
in L(y), uniformly in y E;[yl,yu]. These facts imply the desired convergence
of Pn’y(y). The limit must be a solution to (4.1).

The assertions concerning pyy are proved in the same way and we omit the

details. 0.E.D.
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V. TIGHTNESS OF {U;, SMALL ¢, LARGE n}

By "t small” and "n large" we mean that there arc EO >0, N{ < =, such

that the assertion holds for ¢ < ¢, n > Ne' The actual value of ¢ will be

0 0

unimportant. Basic to the proof of weak convergence of {GF(‘)} is the tightness

of {Uz, small €, large n}.

Theorem 4. For each small € > 0, there is an NL < = guch that the doubly

indexed s.guence {Ug, € small, n > Ne} is tight, where U: = (yi*;)//g.

Proof. Define Viy) = (y-;)z. We have

€, € €, _ €, € €,1_ € _ E _ €,2_
(5.1la) E (y_ . .-y ) = uefac<yn)yn(1-v11{xn -Nl}) +B8 (y) (1 v (1 vZI{Xn —NZ}J,

(5.1b) Es(ye €)2 = ezu[az

€, € €,1 2, € € €,2_
AR AR e(yn)yn(1~v11{xn =N} + Be(yn)(l"yn)‘l'vzl{xn =N} 1.

For small ¢,

€

€, € = €, _E £, € €, € — € €, €
En(yn—y)[ae(yn)Jl'n+BE(yn)J2'n] < En(yn-y)[a(yn)Jl,n+B(yn)J2,n]’

since 0 < ae(y) < afly) and ae(y) # a(y) only if y;—§ > 0 (for small €), and con-

€ __ €

versely for the Bc term. Using the above inequality, (5.la) and Iyn+1 yn|

d O(E) ’

€ € € € - €, € £,1
(5.2) Env(yn+1)-v(yn) < 2ue(yn-y)[a(yn)yn(l—le{xn =N1})

£,2

+ B(y:)(l—y;)(l-vzl(xn

-N2})l + O(cz).
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Define Vi(n) by

€ I (NS e 1 £y _
(5.3) vl(n) = th(yn y)u(yn)ynv] jznlp (N1|yn) P

1, €
(xn'j—n'Nllyn) )

. [ C L. - 2 t 2,.¢ €
+ 2;nc(yn—y)8(y§(l—yn)v2 jzn[p (Nzlyn) -p (Xn,j-n,N2|yn)].

. \ ¢
Note that Pl(xi,O,Ni[y;) = I{Xn'l=Ni}. By Theorem 2, the sums converge absolutely

. . . ‘ .
(the summands go to zero at a geometric rate) uniformly in n, y;, xn. Thus

’Vi(')! = O(e), uniformly in all the variables.
Next, evaluate
€.,E € ~ € = £, € 1 £ €,1_
E V;(n+1)=V (n) = -2uely_-y)aly )y v, [P (N1|yn) 1{x"'"=N )]
- 2uetyS- By ey v P2N_|vE) - T{xE' 2N
n n n 2 2''n n 2
bt €, € - £ € 1 € 1,.¢€ . €
(5.4) & 7 ouev Bty -vialy Oy LTy 0 - PR enelN [y )]
j=n+l
- E-PaySy ehov |y - pHxE, sen,n, [v6) 1)
n n ’n 1'7n n' “1'7n
+ a similar sum for route 2.
We next show that the sums in (5.4) = 0(52) uniformly in all the variables
n, y;, ;. For simplicity we work only with the first sum (route 1). By
|y§+1-y§} = O(e), the smoothness of a(-) and B{(.) and Theorem 2, the sum changes

2, . € - € € . € = €, E
by 0(e™) if (yn+1-y)a(yn+l)yn+1 is replaced by (yn-y)a(yn)yn. Upon making the

substitution and using the Markov property of {Xj(y), j>n} with the value y =

yi and "initial"” condition

RSN S
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€ €
X = X,
n(yn) n
A . € 1,00 . 3
EnP (Xn+l,3-n—1,N1]yn) = p (Xn,j n,Nllyn),

we can rewrite the sum as

T v 1 € 1 € '
(5.5 ofe) y E ([P (Nllyn+1) -p (Nllyn)]
j=n+1

1 o« . € 1,6 . € 2
[p (Xn+l’3 n l'Nllyn+1) -1 (Xn+l,3 n 1.N1|yn)]} + 0(e“) .

Write 6yi = yi+l-yi, and use the differentiability (Theorem 3) of the P* and

the law of the mean to write (5.5) in the form i

- r |

1 1, ¢ . 2
O(s)dyi z Ei [[Py(N1|y§+séyi) - Py(X;+1,]-n—l,Nl!y§+séyn)]ds + 0(e7).

By Theorem 3, the sequence of absolute values of the integrands converges to

> cm——

zero geometrically as j - «, uniformly in s, n, GyZ, and X;+l' This, together
with |6yi| = 0(e), yield that (5.5) is 0(62). The same result holds for the
sum in (5.4) corresponding to route 2.

Define v<(n) = V(yi)+vi(n). By (5.2) and (5.4) and the fact that the

sums in (5.4) are 0(52),
£ € € 2 , £ = E, € 1 €
E V7 (n+l)-v {(n) < 0(e™) + 2ueiy -y) lu(yn)yn(l-le (Nllyn))

+ BlyE) A=y%) (1~v 2, [yE)) ).

v ) —s [ =" ) P om— oeas

Owing to the definition of a(:) and f(+) and the fact that)i‘e [yl'yu]' the

Sanons =k

— R A S SN SEURNE NSNS S SR = e ==~
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: . € - cy . . :
bracketed term has its unique zero at yn = y and it is positive (negative,

.resp.) for yi <y (y; >y, resp.). Thus, there is a v > 0 such that

(5.6) BV (n+1) V¥ (n) < 0(eh) = evviy).

By \vi(n)l = 0(¢) uniformly in n, E;vc(n+l)—vc(n) N 0(&2) - ryv"(n), and hence
(5.7) EV (n) < (exp - eyn)EV®(0) + O(e).

Again, since |V§(n)| = 0(€), uniformly in n, (5.7) holds for V(y;) replacing

Ve(n), from which the existence of the {Ne} and the asserted tightnesg follows.
In particular, let 0 < K0 be arbitrary and let Ns be the smallest integer n

such that (exp - eny) < Koc. Q.E.D.

[ Mﬂ LIS
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'\’ -
VI. WEAK CONVERGENCE OF {U° ()}

Definition. Recall the definition of Ne given at the end of the proof of

Theorem 4. For any sequence of integers n, > Nr’ define Qc = n(—Nt. Define

Ve € - . . Ne Ve
=y and similarly define the "shifted” sequences UL, %l and J. . Then
n n€+n n n in
vE VE vE, ve VE . VE
. = + Ve + .
(6.1) Un+1 Un c[ae(yn)Jln Bc(yn)JZn]
N . . : . ve,N ~ve,N
By Theorem 4, {Uf, ¢ small} is tight. For each integer N, define Un' , yn' .
I
e, N
3. via
in
ve,N ve,N e N, ve N ve ,N, ve ,N ve,N
. U = + Ve la +
(6.2) n+l = Y [ (yn )J1n B(yn )J2n ]bN(Un ),

. . ve,N e | Ve
where bN(-) is defined above (2.1) and we set UO = UO if |UO| < N and equal

n - . e ,N v
e'N—y)//g defines yi' . JzéN

. ve ,N . :
to zero otherwise. Also Un’ = (yn is simply the

indicator function of the set {route i is tried first and call accepted} for

ve,N ve,N . sy e,
the system {Xn' 'Y }, where the choice probabilities {yn N} are used to select the

xe,N, .
routes and {xn’ } is the corresponding route occupancy process. We suppose

that %g'“ = x; . Let EE’N denote expectation conditional on ;g,N and %;'N.
Since |;;'N-§| < Ve(N+1), for small ¢ it is irrelevant whether we use a Be or
a, B in (6.2), and we use a, B for simplicity. By Theorem 1, if we show that
(for each N) {GE'N(-)} is tight and that all weak limits satisfy (6.3) until first
escape from SN' then {U°(-)} is tight and all weak limits satisfy (6.3).

We now define some auxiliary processes which are used in the averaging
method ernloved in the proof. Let P denote the measure defined by the stationafy
nfocoss {Xi(;)' w> 4>}, with corresrondina exrectation onerator E. For each n,

it is necessary to introduce the process {xj(§). j>n}, but with "initial" condition

xn(;) = *E'N. (I.e., after time n, the route choice probability is ;.) The opera-

- ——— m—— e e e - - o et e R A e - p S - _ B ]
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=t ,N . -
tor En' denotes the expectation of functions of this process {Xj(y), j>n} condi-

R L -,
tional on the "initial" condition Xn(y) = X;'N

. Let Jij(;) denote the indicator
function I{call arrives at j+l1, is assigned to and accepted by route i}, when the
route clioice variable is y and the route occupancy process is {Xj(§)}. Whether we
intend the ergodic process or the process {xj(Q), j>n} starting at time n with

—€,N

Ye N | : : = .
" will be made obvious by use of either E or En . Define

xn (Y) = xn
duj(y) = [a(y)Jij(y) + B(y)sz(y)].

Under P, the right side has zero expectation.

"
Theorem 5. For any sequence n. >N, (U} is tight in D[0,»). All weakly

convergent subsequences converge to a Gauss-Markov diffusion satisfying (6.3).

If eQ > = as € > =, then the limiting diffusion u(-) is stationary in that

u(0) has the stationary distribution. (In all cases u(0) is independent of B(.).)

(6.3) du = Gudt + odB, B(+) = standard Brownian motion,

- -3 2 1
Fo(y) = 50wy (1-y) v POIN [y)-v PRan |y 0]

(6.4) G v 3y
Y=y

(6.5) o° = E(suo(§))2 + 2
n

lE 6uo(§)6un(§)‘

il o~18

Proof. Part 1. Until Part 4, all superscripts N will be omitted. Thus

Ve VE Ve N - Ve ~e,N Ve, N, 1
E- X,y ,xn'i,...) for {E;'N,EE'N,X;'N,y A S

we write (ES
— ""n""n'""n''n n n xe

actually work with the N~truncated process in Parts 1 to 3.
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By (5.1) ’
e e e — g e e, 2 e, 1 ve
- = - rea }-— . .
(6.6) En(un+1 Un) v’s.uyn(l yn) [\)2 1{xn N, v]I{Xn Nl}]bN(Un)
2 3 :
Let f(-,)€ QD = , the space of bounded (x,t) functions with compact

support whose mixed partial derivatives up to order 2 in t and 3 in x arc

continucus. To apply Theorem 1 to {Bl(')k. we will get an £ (-) of the form
£5(ne) = £(U5,ne) + £5(ne) + £5(ne) + £5(ne)
n 0 1 2

where the fi(ne) will be defined in the sequel. For each N, all o{(-) or O(-)

are uniform in all variables except their argument. We have

e _ L VE A e ‘VE N ~E e
Enf(Un+1,n€+c)-f(Un,nc) En[f(Un+1,nL) f(Un,nt)] + ft(Un,ne)E + ofe},

e 1ve Ve Ve e 2
-U7) + =E : -
1700+ 2B, me) (U -0+ ole)

ve
E [f(U ,ne)—f(Un,nE)]

e e e
el Enfu(Un,nE) (Un+

] -/ e ve . e Ve VE2_ _ yeol_
(6.7) euf (U ,nely (1 yn)bN(Un)[vzl{Xn Nz} le{xn Nl}]
N Ve 2
+ fuu(U ,nc)EL(UC Ui) + o(e).
2

By the differentiability result of Theorem 3, we can rewrite the term

before the o(e) as follows:*

b2 (¥ £ (O MOE (a6 5E +8(y0) 35 1°
2

- 2 e NE =€ = = y s
- ebN(Un)fuu(un,ne)En[u(y)Jln(y)+B(y)J2n(y)]2 + ole).
2

*The terms E. J (y) and EC Jc (y ') differ only in that in the firlt case y is used

in
as the choicc variable to qet the successor state to xn, and y is used in the

second case. -
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Part 2. We will "average out" the terms in (6.7) one by one. Define

€ o . .
fl(ne) {analogous to the definition of Vl(n) in the last section)

a

t AT Ay ‘i . 2wy R
6. ’ . = / ) - : N e -
(6.8) fl(nr) ‘ubN(Un)yn(l y“)!u(Un,nx) ) lvz(l (Xn,] n,Nzly“)

j=n

)2 v | BT g ’l "y
- PRN, YY) -y (e (X, 3-n,N |y ) - e |y ).

Proceeding analogously to the method of Theorem 4 for Vi(n), we evaluate

s i,%€ . VE, . ve 1,ve .
(writing P (Xn,J—n,Nilyn) in the more convenient form EnP (xn+1,3-n—1,Ni|yn)

in T, below, for j ™ n; see above (5.5))

£ € €
(€.9) %nfl(ne+e)-fl(ne) =T 4T, + Ty,

ve o V€ € e Ve, 2 e,
= - - X = -v. I
T Jewy© (1 yn)bN(an)fu(Un,ns)[(sz{ D SeN v T

2 g 1 e
- (v,p (Nzlyn)-vlp (Nl|yn))]

€ € . € vE _Nc .
T2 = '/Eu%'(n[fu(ﬁn-ﬂ'm"'.C)bl~l(’l\jn+l)Yn+l(1 Yn+1)]

e 2,y . e 2 e
' ) [v, (P (}n+1.3-n~l,N2|yn+l) P (N2|Yn+1))
j=n+l

1, ye , W7 1 e
- v (P (§n+1,3—n-1,N1|yn+l)—P (Nllyn+1))]'

NE ng g e
T, = -/Eu[fu(un,ne)yn(l-yn)bN(Un)1

T e 2,%¢€ , e 2 e
j-£+1E [v, (P (§n+l,3-n—1,nzlyn)-P (Nzlyn))

o

1 ,9¢ g N
- v (p (%n*l,j-n—l,Nllyn)—l N Vo)

. e et et e e m g+ g ———— ¥ < ——— T S

e

=N. })

1
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Using the differentiability result of Theorem 3 and the fact that

v2P2(N2]§) = leI(Nl|§), we get that Tl equals the negative of the first term

on the right side of (6.7) plus
(6.10) eyb_(UN)(y(1-y) lv.p2(N_ |y)-v, PR (N [9)15°) + ole)
: CHON R g YRRy VB AR Tyl =y B AN IV vu e

. e iz e vE
s -+
In T2, by replacing Yol by ' and bN(Un+1)fu(Un+],n€ €) by

nE VE e VE e vE
bN(Un)fu(Un,nE) + (bN(Un)fu(Un,ne))u(U —Un),

n+l

we only alter the term by o(e). Let us make these replacements in T, and denote

2
. 0 . 0 . 2 2 .
the resulting term by T2' Now, split 'I‘2 into two parts (T21, T22), the first
. . “E e ve e ve o ve
(second, resp.) being T2 but with bN(Un)fu(Un,nE) ((bN(Un)fu(Un,ne))u(Un+l Un)'

. e e o . vsa
resp.) replacing bN(Un+l)fu(Un+1,nL+L). By the differentiability results of

Theorem 3 and the fact that |;;+l-;g = O(e) and an argument like that below
(5.5), it can be shown that Tgl + Ty = o(e). Thus

- - /—’\,c _'\,e nE NE
(6.11a) T, + T, o{e) + suyn(l y,) (loN(Un)fu(un,ne))u

. e e e s 2 ,vE X Ve 2 vE
E (U, Un)j_z+l[v2(p (X, 3 n-1,N2|yn) - P (N2|yn))

ve

1, ve . 1 ve
- vl(P (Xn+1,j—n—1,N1|yn) - P (Nl|yn))].

We now simplify (6.1la) by a series of replacements, each one altering the
" -
term by o(c). First replace all the yz by y. By Theorem 3 and |8§+1-8§| = 0(v¢)

and a differentiability arqument such as used below (5.5), this only alters the
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term by of{c). Since v P2(N2|§)—le1(Nl[§) = 0, we delete this part of the result-

2
ing summand. We now have

. e o RE NE e !
(6.116) T, + Ty = ole) + Veloy ()€ (U nen EL (U7 -U )j-Z+l 1y

where for j > n+l,

2('\‘€ .

€ - 1 ve . - - = _ =t -
qj = [VZP xn+l,3—n-l,N2|y)—v1P (xn+l,3—n-1,Nlly)]uy(l-y) = En+16uj(y).

Finally, by the differentiability result of Theorem 3, (6.1lb) equals

_ VE nvE VE i fug
(6.12) T, + Ty = ole) + eb () (b (e (U ,ne)) | E

Su_(y)du.(y).
3 j=n+1 n n Jj

The difference between (6.11b) and (6.12) is simply due to whether ;e or y is
n

vE VE NE e
used to get X
get n+l and Un+1 from xn and Un'

Part 3. Now, we "average out" the sum in (6.12). Define fg(ne) by

oo

€ - e VE ve T —€ - - = - -
£(ne) = eb (U) by (U £ (U~ ne) ] ) (£ Su (y) 6w, (y)-Edu, (§) 6wy (§)1.

j=n k=j+1-

By the (uniform) geometric convergence result of Theorem 2, the sum converges
absolutely and !f;(ne)l = 0(e). By a straightforward calculation using the

stationarity of {Gun(§)} under P, we can show that

B £ (neve)-£5(ne) = - (6.12) + ole)
n 2 2

VE vE ~E T = - -
+ b (U5) (b (UD€ (U7 ,ne)) | ) ESug(y)éu,(y)).

3=1 ]

Finally, we treat the term before the o(e) of (6.7) - in the form in

which it is written below (6.7). Define f;(nc) by

e e —————

-
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f (U ,NE) ™
€ . uu n 2 e =€
£, (ne) = ¢ ———— b (U) Z (E_(6u

. j(§))2-E(suj<§))21.
j=n

€
By a procedure similar to that used for fl(ne), it can readily be shown that

ES£S (ne+e)-£5(ne) = ole) + ¢ fﬁﬁigﬂifil b2 (G5 E (8u, ( 72
no'" o'nel =0 2 N''n Y
(U ,ne}
n 2,vE, =€ - - - =\ ,2
13 5 bN( n)En[a(y)Jln(yHB(y)Jzn(y)]

Summarizing the previous calculations
VE _E € e e NE vE
Enf (ne+e)-f (ne) = o(e) + Eft(Un,ne) + Efu(Un,nE)GUnbN(Un)

E VE vE st -— - -
(6.14) + efu(un,ne)bN'u(Un)bN(Un)jZIE Suy () 6u, (¥)

)[E(Gu 2+ 2 2 E Suy(y)6u

(v)1.
3=1 )

Part 4. Conclusion. Reintroduce the superscript N. Fix N. All the

",
fi'N are bounded and of order O(Ye) and {Ue N} = {U%’ N(0)} is tight. Also
Ei NN nere)-£5'N(ne) = o(e). Thus, by [7], Theorem 2,

the bounded sequence {BE'N(-)} is tight in D[0O,~). Let £ index a weakly con-
vergent subsequence with limit U'(.). Since A is defined to be the infinites-
imal operator of (6.3), by (6.14) and Theorem 1, we see that UN(') solves the
martingale problem corresponding to an infinitesimal operator AN whose coeffic~

n
ients equal those of A in § Thus, by Theorem 1, {ut(-)} converges weakly to &

N’
solution u{(-) of (6.3). The independence of B(.) and u(0) 'is a consequence of
the fact that of-) is the unique solution to the martingale problem. The

stationarity assertion is not hard to prove, but we omit the details. Q.E.D.

e e - - e - -
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VITI. ASYMPTOTIC THEORY OF AN ADAPTIVE QUANTIZER: INTRODUCTION

In recent years there has been a great deal of effort concerning the effic-
ient quantization of signals in telecommunications systems, e.g. of voice
signals in telephone transmission systems. Let z(-) denote the actual signal
process and A a sampling interval. In the problem of interest, the signal is
sampled at moments {nA, n=0,1,...}, then the samples {z(nA)} are quantized, and
it is only the quantized samples which are transmitted. Let 0 = 50 < El < ,.. <

i=0, ..., L-1, are real

£ < EL =, 0 = “1 < Ny «ee < L where Ei’ n

L-1 i+1’
numbers. Let the guantization function Q(-) be defined as follows: there is

ay > 0 such that for z(nA) > 0, Q(z(njd)) = yny if z(np) € [y&i_l,yEi), and set
Q(-2z) = -Q(z). The parameter y is a scaling parameter. As the signal power
increases (decreases), y should increase (decrease) for efficient reconstruction
of the signal from the sequence of guantizations.

The problem of choosing appropriate values of y when the signal powers can
vary by an order of magnitude or more has led to the study of adaptive quan-
tizers. We give only a brief description in order to formulate the problem.

For more detail and discussion of the engineering considerations, the reader
is referred to the references [4]), [5]. Let £ denote a "rate of adjustment”
parameter for the scale parameter y and let yz denote the value of the adapted
scale parameter at the nth sampling instant. Set 8 € (0,1]) and let 0 < Mi <

€ €

M2 < ... < Mi < = with Mi <1, ML > 1., We study an adaptive quantizer which

is a truncated form of the (typical in such an application) adaptive system

8 €

€ € € € €
B, whereB =M/ if |z(na) | € ly &, v 8

(7.1) Ynel

= (yi)

Goodman and Gersho {4] did a thorough analysis of (7.1) for the case 8 =

1 and {z(nA)} independent and identically distributed. With 8 < 1, the system
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has some desirable robustness properties and this case, together with simula-
tions, is discussed by Mitra [5] and others. The last reference is concerned
more with reconstruction of the process z(-) from {Q(z(nA)) ! and does not give an
asymptotic analysis.

Generally, with non-i.i.d. {z(nd)}, it is hard to get concrete information
on {yi} for large n. If the signal power varies over time or if (as is real-
istic for moderate values of A) {z(nA)} is not i.i.d., then techniques such
as used in [4) fail, but for small rates of adjustment (¢) an asymptotic
analysis can still shed light on the process behavior. At the present time,
it seems that little more can be done for the general case. Here, we scale the
problem so that an asymptotic analysis is possible. For mathematical as well
as practical purposes, it is useful to confine yi to some finite positive
interval [yl,yu]. Now, we define the truncated form of (7.1) which will be
studied. Let a > 0, 0 < ae < 1 and let {Ei} be real numbers suci that £, <

£, < ... < QL and %

5 < 0, QL > 0. Then we use

1

(7.2)

where | denotes truncation and

3 , .
Bn = (1+s£i) if lz(nA)l E:[y;ﬁi_lfyiii).

The asymptotic results can be used to get information on the effects of the

(!i}, A, structure of z(:) and a on the performance for small €. For notational

convenience below, let Yy < 1 and Y, > 1. Rewrite (7.2) in the form (7.3), where ’
l-en 2
y = y[l-ca log yl+0(e”) and (1+cb;) H B; are used, and F and bE have the
n h
abvious definitions. l
3

T T e et > m—— ]
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b f | 2 7
ly +1¥(y ,z(nA))Y+0 (7))
n n
YQ y?

[

€ £, ¢ € 2
el = [yn(1+ebn)-cayn log yn+O(L )]

(7.3) vy

In [4], the process {log yi} rather than {yi} is dealt with.

We proceed in very much the same way that we did for the automata problem.

The main difference arises from the unboundedness of {z(nA)}, under assumption

(7.6). By definition,

o
™
]
Il o~

€ €
g1zt | €ty &, v ED)

i=1

There are continuous functions lz(-) such that (7.4) and the properties below

it hold.
€ € €, € € € 2
(7.4) Yoe1 = yn(1+eBn(ynJ) - eay log y, * o(e")
= ye + €F (ye z(nd)) + 0(52)
n e n’ !

where
(7.5) 85 (y) = E 151 |2(n) | € IyE £.)

. n'¥ = gy LSS LA AT L

i=1

Also, li(') can be chosen such that Ei(-) = Qi out of an O(e) neighborhood of
Yo (resp. yu) if li < 0 (resp. li > 0), and 0 > Rz(y) > ﬁi for Qi < 0 and

0<25(y) <, for £, > 0.
- 1 - 1 1

_——— . - C e e aeima g I SR T I P
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Some assumptions. For specificity, z(:) is assumed to be a stationary

Gaussian process with a rational spectral density. Thus there are an asymptot-

ically stable matrix M, a matrix C, a row vector D, and a process v(+) such that

(7.6) dv = Mvdt + Cdw

Dv, w{(-) = vector-valued standard Brownian motion.

~N
1]

This assumption is not essential - only certain smoothness properties of
the multivariate density are used, together with the exponential rate of
decrease of the effects of the initial conditions.

Define %e(y) = EFE(y,z(nA)) and %(y) = EF(y,z(nd)). Let og = var z(t).

We have (the subscript y denotes the derivative)

) . £2,2 2 2
o S EM 2 T g exp - E - £, oxp - 21 - oy
Yy v Y2no  i=1 20 20
0 0 0
L-1
2 ) 22, 2
= (2.,-2, )&, exp ~£)y /20 - o/y.

6;60 i=1 i i+l7 i i 0

We can see from the terms in (7.7) that %(y)/y is the sum of two strictly convex
functions, the first being bounded and having a negative slope, and the second
going to ® as y > 0 and to = as y + ®. Thus there is a unique y € (0,®) such
that ﬁy(;) = 0. Also f(y) >0 for 0 <y < y and ﬁ(y) < 0 for y > y and %y(;)

# 0. We assume that y Ef(yz,yu). For small €, the assertions in the last
sentence hold with ﬁu replacing F. Define Uz - (yi—?)//g and let En denote

expectation conditioned on {(v(3jA),Jj<n}.




e O B e - - I T SN vt

-29-

VIII. TIGHTNESS OF {U;, SMALL €, LARGE n}

The proof is similar to that of Theorem 4 in Section V and we oniy set

it up and indicate how to deal with the fact that {z(nA)} is unbounded.

Theorem 6. Under the conditions in Section VII, the conclusions of Theorem 4

hold.

Proof. Define Viy) = (y-§)2. There is a Y > 0 such that (y-y)F(y) < -yiy),

all e > 0 and y E[yl,yu]. We have

€

_ _E, = € € 2 € 2
1l = yn+eF€(yn)+E[Fc(yn,z(nA))-Fe(yn)l+0(€ ),

€ €,2 _ 2
(yn+l-yn) = 0(e”), y
-~ L E
Fe(y) = {lei(y)P(yCi_ljlz(nA)|<y€i} - of{y log vy),

(8.1)

€

L
€y _ ay € € £, € -
pa1 ¥e) = EF ) ey 1 G plye,  <lzmt) | <yg |vina-) )

E;(Y
i=1

- P{y Ei_1§|z(nA)|<y Ei}] oyt v 0,
n

As done in connection with (5.2) (where a_, B. were replaced by a,8), we get an

upper bound for the second moment by replacing li(yi) by li {hence ﬁc by £). Thus
€ € € 2 € -8, €
(8.2) Env(yn+l)-v(yn) < 0(e”7) + Ze(yn—y)F(yn)

+ 2(y:—§)[sum in (8.1) with Qi(-) replaced by li].
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. > € _ o€ €
Next, define V,(n) by Vl(n) =V (n,y ), where
© L
€ -
(8.3)  vi(n,y) = 2¢ (y-y) ) yli[P{yii_l:]z(jA)|<y€i|v(nA-A)}

j=n i=1

- Plyg,_ <lz(nd) <y 31,

Ivi(n)| can be estimated by use of the following fact. There are KO < « and

a > 0 such that |eMt| < Koe-at. There is an a;, > 0 and a K, <« such that for
—aTl/2
T, > T > 0 and on the set {v(t): |v(t)|e :;},
-a, Ty
(8.4) lP{v(t+Ti)€ B i=1,2|v(t)} - Plv(t+t, ) EB,, i=1,2}] < K,e .

1

for all Bl' BZ'

In order to use (8.4) (in this application we set B_ = range space of v(t)),

2

write the gum in (8.3) as
H
(8.5) I+ 1,

where H = min{m: e-(m-n)Aa/zlv(nA-A)I:l} = 0(1+max(0, log|v(nA-a)|)). Then
the first sum in (8.5) is O(1+max(0, log|v(ns-A)|)), and the second is O(1) by
(8.4) and the summability of Zj>oexp -a,3b. Thus lvim| =

o(e) [1+max(0, log|v(na-a)|)) < g(e)(1+|v(nA—A)|). From this point on, the

proof is exactly the same as that for Theorem 4. Q.E.D.
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IX. THE LIMIT THEOREM

nE vE
We continue to use the tilde % terminology of Section V1, and define Un' Yor
Y
%E, etc., as there. Also, set ;(nA) = z(neA+nA) and v(nd) = v(nEA+nA). The idea
n
~E L NE . C_
now is still to prove weak convergence of U (). We use En for expectation condi

) e ,N ve,N _  ve,N -
tional on {v(ja), j<n+ne)' We have ((2.1b) defines yn' by U ° = y, ) //e)

e e e (e /e nNE & e 3/2
(9.1a) Un+l = Un + eFE(yn) + c(Fc(yn,z(nA)) Fe(yn)) + O(e ),

e, N _ NELN Jo e (vEN ‘e N ~ Ve, N 3/2 %e, N
(9.1b) Upel = vttt e[Fe(yn ) + (Fe(yn ,z(nh)) Fg(yn )) + O(e ).]bN(Un ).
Theorem 7. Under the conditions of Section VII, the conclusions of Theorem 5

hold, but where G = ?y(;) and (stationary process z(-) used)

o2 = BF%(3,2(0)) + 2 | EF(7,2(nd))F(¥,2(0)) .

n=1

Remark. If M, C or D were time-varying, then an extension of the tech-
nique is possible, provided that the t.me variation per step is O{e). The limit
diffusion yields information on the dependence of the performance on the para-
meters «, {Ei}, A, {Ei}, as well as an estimate of the asymptotic variance and
correlation function for small €.

.
L3

Proof. Except for the unboundedness of the noise {z(nA)}, the proof
would be essentially the same as that of Theorem 5, and only an outline will
be given.

Owing to the truncation IBE'NI < N+1, the Fe' §€ in (9.1b) can be replaced by

F and ﬁ, respectively, without changing the values, for small €. Let us make

‘o
the replacement. Fix f(:,:}€ 'fé's. Drop the superscript N on all variables

for notational convenionce, as done in Theorem 5. Then, by a Taylor expansion, i
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Vg nE o e . = . vE ) g ~ - Vg vE
(9.2) Enf(Un+l,nt+.) f(Un,nL) o(e)+£ft(Un,nt)+efu(Un,nc)Fy(y)UnbN(Un)
Je vE ne - /—f\ze N n= f"\lﬁ vE
+ vef (U ,ne)E_[F(y+YeU ,z(nd))-F(y+YeU )]b (U")
u n n n n N 'n

2 €

n

E ve nE = Ve Y B A ek 1 2.
+ 5 fuu(Un,ne)En[F(y+ eUn,z(nA)) F(y+ EUn)] bN(U )). '
N
Since the second derivative of EEF(y,z(nA)) with respect to y is bounded by

4"
constant [1+|v(na-3) |1, the next-to-last term of (9.2) can be written as

NE NE - A VE
(9.3) JEfu(un,ne)En[r(y,z(nA))—F(y)]bN(Un)

vE 3 e N ~ e e n
+ efu(un,ne>5§£n[r(y,z(nA))-F(y)1 y=§UnbN(Un)+o(€)[l+|v(nA—A)l].

The last term of (9.2) can be written as (recall that F(y) = 0)
€ Ve ve - N nAe 2.2 N
(9.4) EY fuu(Un,ne)En[F(y,z(nA))-F(y)] bN(Un) + ol(e).

Now, we use the method of Theorem 5 in order to average out the terms of
(9.2). We use £ (ne) = f(ﬁi,ne)+ Z?_3f§(n€). Define f;(nc) by (to average

out the second term of (9.3))

€ vE e Ve s 3 e N ~
£5(ne) = ef (U ne)b (W)U ] 5 E [Fly,2(30)-F(y)]|
j=n Y=Y
By an argument similar to that used below (8,5), together with the derivative
bound stated above (9.3}, it can be shown that Ezfg(nc+c)—fg(nc) = - (gecond
term of (9.3}) + o(1) (1 + |¥(nA-A) |?] and that |f§<nc)| <o(e) 1 + |V(na-8)|1.

Next, introduce f;(no) (to average out (9.4)):
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€ Ve 2 e ° Ve 2 - v 2,- 0N
= -E , A .
5 fyu (U /me)bL (U5 .2 [E F (y,2(38))-EF“(y,Z(38)) ]
J=n
€

Then, as for f3, we have |f2(ne)| <0(e)[1 + lg(nA-A)}]. Using this, it is not
hard to show via a small amount of manipulation that

) ) ¥ norb (55 (X F2 (5, 3 (n)) -EF2 (5, 3 (nt)) |
(neve)=f, (ne) = = 5 £, (U )by (U ) IR, '

vE e
Enfd

+ole) (1 + |vina-8) ).

Next, introduce fg(ne) in order to average out the first term of (9.3):

a4

N - N
£o(ne) = Ve £ (U5, ne)b (¥ [ ECP(y,Z(380).
5 u n j=n

'\‘ .
Then, again, |f§(ne)| = o(/e) (1 + Iv(nA~A)|) and we can write

vE
E
n

(9.5a) fg(ne+e)—f;(nc) = - (first term of (9.3)

o
e e e vE Y e - N
+ cEn[fu(Un+l,ns)bN(Un+l)—fu(Un,ne)bN(Un)]j=£+lEn+lF(y,z(JA)).

With a small amount of manipulation, we can show that the last term of (9. 5a) equals

vE e VE p
(9.5b) by (U)) I£ (U] ne)by (U7)] __Z

EEF(¥,2(30)) P (3, 2(nd) )40 (e) (14| ¥ (na-8) |1
j=n+l R

Finally, f;(nt) is introduced in order to averaqe out the sum term in (9.5b) in

the same way that f;(nc) was used to average out (6.12) in Theorem 5. Define

" AN b
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€ _ > vEe ~E
(9.6) f6(ne) = E[fu(Un,nc)bN(Un)]ubN(Un)

v [%ﬁp<§,2(kA>)y(§,}(jA>)—nF(Q,E(kA)>r(§,}(jA)>}.
j=n k=3 +1

o
By (8.4), fz(nﬁ) is well defined and is O(e) {1 + |v(nA—A)|2], as will now be

proved.

Y]
Define H as below (8.5) and let E;ng denote the (j,k)th summand in (9.6)

and write the sum in (9.6) as

H © oo
5] EBS o+ 7 b OE'RE =1+ 1I.
j=n k=3j+1 njk j=H+1l k=3j+1 n ok

By the argument connected with (8.5), the inner sum in I is bounded by

9.7} [Eiﬁ?kl < 7 EY|E%s

< CIEBL = o+ [Vma-a) ).
k=j+1 " J k=g+1 7 9D

AV
Thus, by the bound on (H-n), I < o(1 + |v(na-8) |%). To treat II, we note the

[

"
following: there is a K_ < = such that for H < j < k, lEiBjkl < Kz exp —al(j-n)A.

2

Also, for k > j,
- N
EEF(y,k(kA)) < K, lexp -a, (k=3)8+I{| (exp ~a(k-1)8)V(36-8) | > 1}1.
With a little more work, these estimates yield the existence of a K3 < = guch
¥
that ]%ﬁsgk] < (1+o(lv(nA—A)l)x3 exp ~a,;A[(j~n)+(k-3)1/2, from which the fact

that II = O(1) and the last sentence of the previous paragraph both follow.

It is straightforward to show that

e e e Sttt o S A I T LI T
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Nt .
B £, (nut)=f (nv) = —(sum term in (9.5))

¢ + b (5 . ue = - 2
eby (U ) [£ (U ,nedb, (U] ZJEF(y,z(nA))F(y,z(O)) + ole) [1+|v(na-8) |).
n:
Summarizing, with f' (n¢) defined by £% (ne) - f(a;,ns) + Z§_3f§(na), we

have

(9.8) ¥ £ (nete)-£ (ne) = ole) [1+]v(na-a) [D) + ef (T°,nc) + ef (U°,ne)F (P Ub_(UD)
n t n u n Yy nN n

w

vE e e - -
+ b (U) [£ (U ,ne)b (U] J EF(y,z(nd))F(y,z(0))

n=]
f (GE €)
3]
+ eb (U5~ 5p? (5, 2(0)) vote) (14 [Vina-) |

N,
Now, if the {UQ'N(‘)} (returning to the use of superscript N) were tight

for each N, then (9.8) and Theorem 1 imply that any weakly convergent sub-
N
sequence of {UE'N(-)} converges to a diffusion with operator AN, whose coeffic-

N~
ients equal those of A in SN and, hence, that the original {u* ()} converge

weakly to the solution of (6.3) with the G and o defined in Theorem 7.

£ N 2
But (dropping the superscript N again) |X$=3fi(ncﬂ = O(/E)ll+|v(nA—A)| )

and lg;fc(ns+€)-fe(ne)| = 0(e) + o(e)[1+|3(nA—A)|2] and for any T < « ,

K » 0, the Gaussian property implies that

lim P{sup fh(nc)lz < K} = 0.
€+0 n<T/¢

[1]1 or [7], as it did for the case of

Thus, tightness follows by Theorem 2 of

Theotem 1. Q.E.D.
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